We can't find the internet
Attempting to reconnect
Something went wrong!
Hang in there while we get back on track
txtai is an all-in-one embeddings database for semantic search, LLM orchestration and language model workflows.
Embeddings databases are a union of vector indexes (sparse and dense), graph networks and relational databases. This enables vector search with SQL, topic modeling, retrieval augmented generation and more. Embeddings databases can stand on their own and/or serve as a powerful knowledge source for large language model (LLM) prompts. Summary of txtai features:
- π Vector search with SQL, object storage, topic modeling, graph analysis and multimodal indexing
- π Create embeddings for text, documents, audio, images and video
- π‘ Pipelines powered by language models that run LLM prompts, question-answering, labeling, transcription, translation, summarization and more
- βͺοΈοΈ Workflows to join pipelines together and aggregate business logic. txtai processes can be simple microservices or multi-model workflows.
- βοΈ Build with Python or YAML. API bindings available for JavaScript, Java, Rust and Go.
- βοΈ Run local or scale out with container orchestration
txtai is built with Python 3.8+, Hugging Face Transformers, Sentence Transformers and FastAPI. txtai is open-source under an Apache 2.0 license.
continue reading on neuml.github.io
β οΈ This post links to an external website. β οΈ
If this post was enjoyable or useful for you, please share it! If you have comments, questions, or feedback, you can email my personal email. To get new posts, subscribe use the RSS feed.